Abstract
The focus on natural foods and “clean” labeled products is increasing and encourages development of new biobased ingredients. Fish solubles derived from downstream processing of side stream materials in the fish filleting industries have potential as emulsifiers based on their surface-active and emulsion stabilizing properties. The aim of this study was to evaluate and compare emulsion properties and critical micelle concentration (CMC) of direct protein extracts and protein hydrolysates based on fish backbones, and to identify associations between molecular weight distribution and process yield with the studied physicochemical properties. Protein extracts and enzymatic protein hydrolysates were produced based on two raw materials (cod and salmon backbones), two enzymes with different proteolytic specificity, and varying hydrolysis time. Emulsion activity index (EAI), emulsion stability index (ESI) and CMC were measured and compared with casein as a reference to protein-based emulsifiers. Protein hydrolysis was found to have negative impact on EAI and CMC, likely due to generation of small peptides disrupting the amphiphilic balance. The direct protein extracts had comparable EAI with casein, but the latter had superior ESI values. Protein hydrolysates with acceptable EAI could only be obtained at the expense of product yield. The study emphasizes the complexity of physicochemical properties of protein hydrolysates and discusses the challenges of achieving both good surface-active properties and high product yield.
Subject
Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science
Reference38 articles.
1. Food Emulsions—Principles, Practices and Techniques;McClements,2016
2. Progress in natural emulsifiers for utilization in food emulsions;Ozturk;Curr. Opin. Food Sci.,2016
3. Towards new food emulsions: Designing the interface and beyond;Berton-Carabin;Curr. Opin. Food Sci.,2019
4. Surfactants Used in Food Industry: A Review;Kralova;J. Disper. Sci. Technol.,2009
5. Peptides as functional surfactants;Dexter;Ind. Eng. Chem. Res.,2008
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献