Finite Element Modelling for Predicting the Puncture Responses in Papayas

Author:

Zulkifli Nurazwin,Hashim NorhashilaORCID,Harith Hazreen Haizi,Mohamad Shukery Mohamad Firdza,Onwude Daniel IroemehaORCID,Sairi Masniza

Abstract

This study aims to develop a finite element (FE) model to determine the mechanical responses of Exotica papayas during puncture loads. The FE model of the puncture-test was developed using the ANSYS 19.1 software. The proposed framework combined the finite element method and statistical procedure to validate the simulation with the experimental results. Assuming the elastic-plastic behaviour of papaya, the mechanical properties were measured through tensile test and compression test for both skin and flesh. The geometrical models include a quarter solid of papaya that was subjected to a puncture test with a 2 mm diameter flat-end stainless-steel probe inserted into the fruit tissues at 0.5 mm/s, 1 mm/s, 1.5 mm/s, 2 mm/s, and 2.5 mm/s. The FE results showed good agreement with the experimental data, indicating that the proposed approach was reliable. The FE model was best predicted the bioyield force with the highest relative error of 14.46%. In conclusion, this study contributes to the usage of FE methods for predicting the puncture responses of any perishable fruit and agricultural products.

Funder

Fundamental Research Grant Scheme

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health(social science),Microbiology,Food Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3