Partial-, Double-Enzymatic Dephosphorylation and EndoGluC Hydrolysis as an Original Approach to Enhancing Identification of Casein Phosphopeptides (CPPs) by Mass Spectrometry

Author:

Deracinois BarbaraORCID,Matéos Aurélie,Romelard Audrey,Boulier Audrey,Auger Julie,Baniel Alain,Ravallec RozennORCID,Flahaut ChristopheORCID

Abstract

The identification of phosphopeptides is currently a challenge when they are part of a complex matrix of peptides, such as a milk protein enzymatic hydrolysate. This challenge increases with both the number of phosphorylation sites on the phosphopeptides and their amino acid length. Here, this paper reports a four-phase strategy from an enzymatic casein hydrolysate before a mass spectrometry analysis in order to enhance the identification of phosphopeptides and phosphosites: (i) the control protein hydrolysate, (ii) a two-step enzymatic dephosphorylation of the latter, allowing for the almost total dephosphorylation of peptides, (iii) a one-step enzymatic dephosphorylation, allowing for the partial dephosphorylation of the peptides and (iv) an additional endoGluC enzymatic hydrolysis, allowing for the cleavage of long-size peptides into shorter ones. The reverse-phase high-pressure liquid chromatography–tandem mass spectrometry (RP-HPLC-MS/MS) analyses of hydrolysates that underwent this four-phase strategy allowed for the identification of 28 phosphorylation sites (90%) out of the 31 referenced in UniprotKB/Swiss-Prot (1 June 2021), compared to 17 sites (54%) without the latter. The alpha-S2 casein phosphosites, referenced by their similarity in the UniProt database, were experimentally identified, whereas pSer148, pThr166 and pSer187 from a multiphosphorylated long-size kappa-casein were not. Data are available via ProteomeXchange with identifier PXD027132.

Funder

C.P.E.R

Région Hauts-de-France

ANR

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3