Experimental Evaluation of a UWB-Based Cooperative Positioning System for Pedestrians in GNSS-Denied Environment

Author:

Gabela JelenaORCID,Retscher GuentherORCID,Goel Salil,Perakis Harris,Masiero AndreaORCID,Toth Charles,Gikas Vassilis,Kealy Allison,Koppányi Zoltán,Błaszczak-Bąk WioletaORCID,Li YanORCID,Grejner-Brzezinska Dorota

Abstract

Cooperative positioning (CP) utilises information sharing among multiple nodes to enable positioning in Global Navigation Satellite System (GNSS)-denied environments. This paper reports the performance of a CP system for pedestrians using Ultra-Wide Band (UWB) technology inGNSS-denied environments. This data set was collected as part of a benchmarking measurementcampaign carried out at the Ohio State University in October 2017. Pedestrians were equippedwith a variety of sensors, including two different UWB systems, on a specially designed helmetserving as a mobile multi-sensor platform for CP. Different users were walking in stop-and-go modealong trajectories with predefined checkpoints and under various challenging environments. Inthe developed CP network, both Peer-to-Infrastructure (P2I) and Peer-to-Peer (P2P) measurementsare used for positioning of the pedestrians. It is realised that the proposed system can achievedecimetre-level accuracies (on average, around 20 cm) in the complete absence of GNSS signals,provided that the measurements from infrastructure nodes are available and the network geometryis good. In the absence of these good conditions, the results show that the average accuracydegrades to meter level. Further, it is experimentally demonstrated that inclusion of P2P cooperativerange observations further enhances the positioning accuracy and, in extreme cases when only oneinfrastructure measurement is available, P2P CP may reduce positioning errors by up to 95%. Thecomplete test setup, the methodology for development, and data collection are discussed in thispaper. In the next version of this system, additional observations such as theWi-Fi, camera, and othersignals of opportunity will be included.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3