Analytical and Numerical Thermodynamic Equilibrium Simulations of Steam Methane Reforming: A Comparison Study

Author:

Varandas Bruno1,Oliveira Miguel12ORCID,Borges Amadeu123ORCID

Affiliation:

1. Laboratory of Thermal Sciences and Sustainability, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal

2. CQ-VR, Chemistry Research Centre, University of Trás-os-Montes and Alto Douro, 5001-801 Vila Real, Portugal

3. Department of Engineering, School of Sciences and Technology, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal

Abstract

Computer simulation is a crucial element in the design of chemical processes. Although numerous commercial software options are widely recognized, the expense associated with acquiring and sustaining valid software licenses can be prohibitive. In contrast, open-source software, being freely available, provides an opportunity for individuals to study, review, and modify simulation models. This accessibility fosters technology transfer and facilitates knowledge dissemination, benefiting both academic and industrial domains. In this study, a thermodynamic equilibrium steady-state analysis of steam methane reforming using a natural-gas-like intake fuel was conducted. An analytical method was developed on the Microsoft Excel platform, utilizing the material balance equations system. The obtained results were compared to numerical methods employing the free-of-charge chemical process simulation software COCO and DWSIM. The investigation explored the influence of temperature, pressure, and steam-to-carbon ratio to determine optimal operating conditions. The findings suggest that higher temperatures and lower pressures are highly favorable for this process, considering that the choice of steam-to-carbon ratio depends on the desired conversion, with a potential disadvantage of coke formation at lower values. Consistent results were obtained through both analytical and numerical methods. Notably, simulations performed using DWSIM showed a deviation of 6.42% on average compared to COCO values. However, it was observed that the analytical method tended to overestimate the results by an average of 3.01% when compared to the simulated results from COCO, highlighting the limitations of this analytical approach.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3