Prospects and Technical Challenges in Hydrogen Production through Dry Reforming of Methane

Author:

de Medeiros Fábio Gonçalves MacêdoORCID,Lopes Francisco Wendell BezerraORCID,Rego de Vasconcelos BrunaORCID

Abstract

Environmental issues related to greenhouse gases (GHG) emissions have pushed the development of new technologies that will allow the economic production of low-carbon energy vectors, such as hydrogen (H2), methane (CH4) and liquid fuels. Dry reforming of methane (DRM) has gained increased attention since it uses CH4 and carbon dioxide (CO2), which are two main greenhouse gases (GHG), as feedstock for the production of syngas, which is a mixture of H2 and carbon monoxide (CO) and can be used as a building block for the production of fuels. Since H2 has been identified as a key enabler of the energy transition, a lot of studies have aimed to benefit from the environmental advantages of DRM and to use it as a pathway for a sustainable H2 production. However, there are several challenges related to this process and to its use for H2 production, such as catalyst deactivation and the low H2/CO ratio of the syngas produced, which is usually below 1.0. This paper presents the recent advances in the catalyst development for H2 production via DRM, the processes that could be combined with DRM to overcome these challenges and the current industrial processes using DRM. The objective is to assess in which conditions DRM could be used for H2 production and the gaps in literature data preventing better evaluation of the environmental and economic potential of this process.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3