Abstract
Titanium alloy possesses high strength, good corrosion resistance, and high heat resistance; thus, it is widely used in the aerospace and other fields. Blades of titanium alloy are important components of aero-engines and are essential to the engines operation. In this work, a Ti-6Al-4V blade was formed by cross wedge rolling (CWR) to realize the near net-shape of an aero-engine blade. First, thermal simulation experiments of Ti-6Al-4V were carried out to obtain the thermal deformation constitutive equation of the alloy. The finite element software Deform-3D was then used to simulate the thermodynamic coupling of the forming process, and the metal flow, temperature, and stress–strain distribution laws during the forming process were analyzed. Finally, experimental verification of the Ti-6Al-4V blade was carried out by using an H500 CWR mill. The results revealed the feasibility of applying CWR to preform Ti-6Al-4V blades.
Funder
National Natural Science Foundation of China
Subject
General Materials Science,Metals and Alloys
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献