The Application of Finite Element Method for Analysis of Cross-Wedge Rolling Processes—A Review

Author:

Pater Zbigniew1ORCID

Affiliation:

1. Mechanical Faculty, Lublin University of Technology, 36 Nadbystrzycka Str., 20-618 Lublin, Poland

Abstract

The aim of this article is to review the application of the finite element method (FEM) to cross-wedge rolling (CWR) modeling. CWR is a manufacturing process which is used to produce stepped axles and shafts as well as forged parts for further processing on forging presses. Although the concept of CWR was developed 140 years ago, it was not used in industry until after World War 2. This was due to the limitations connected with wedge tool design and the high costs of their construction. As a result, until the end of the twentieth century, CWR tools were constructed by rolling mill manufacturers as they employed engineers with the most considerable experience in CWR process design. The situation has only changed recently when FEM became widely used in CWR analysis. A vast number of theoretical studies have been carried out in recent years, and their findings are described in this overview article. This paper describes nine research areas in which FEM is effectively applied, namely: the states of stress and strain; force parameters; failure modes in CWR; material fracture; microstructure modeling; the formation of concavities on the workpiece ends; CWR formation of hollow parts; CWR formation of parts made of non-ferrous materials; and new CWR methods. Finally, to show the potential of FEM on CWR modeling, a CWR process for manufacturing a stepped shaft used in car gearboxes is simulated numerically. This numerical simulation example shows that FEM can be used to model very complex cases of CWR, which should lead to a growing interest in this advanced manufacturing technique in the future.

Publisher

MDPI AG

Subject

General Materials Science

Reference113 articles.

1. Cross-Wedge Rolling;Button;Comprehensive Materials Processing,2014

2. Past developments, current applications and trends in cross wedge rolling process;Fu;Int. J. Mach. Tools Manufact.,1993

3. Theoretical method for estimation of mean pressure on contact area between rolling tools and workpiece in cross wedge rolling processes;Pater;Int. J. Mech. Sci.,1997

4. Simulation of cross-wedge rolling process using the upper-bound method;Pater;Scand J. Metall.,1998

5. Numerical simulation of the dross wedge rolling process including upsetting;Pater;J. Mater. Process. Technol.,1999

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3