A Dual-Attention Recurrent Neural Network Method for Deep Cone Thickener Underflow Concentration Prediction

Author:

Yuan Zhaolin,Hu Jinlong,Wu DiORCID,Ban Xiaojuan

Abstract

This paper focuses on the time series prediction problem for underflow concentration of deep cone thickener. It is commonly used in the industrial sedimentation process. In this paper, we introduce a dual attention neural network method to model both spatial and temporal features of the data collected from multiple sensors in the thickener to predict underflow concentration. The concentration is the key factor for future mining process. This model includes encoder and decoder. Their function is to capture spatial and temporal importance separately from input data, and output more accurate prediction. We also consider the domain knowledge in modeling process. Several supplementary constructed features are examined to enhance the final prediction accuracy in addition to the raw data from sensors. To test the feasibility and efficiency of this method, we select an industrial case based on Industrial Internet of Things (IIoT). This Tailings Thickener is from FLSmidth with multiple sensors. The comparative results support this method has favorable prediction accuracy, which is more than 10% lower than other time series prediction models in some common error indices. We also try to interpret our method with additional ablation experiments for different features and attention mechanisms. By employing mean absolute error index to evaluate the models, experimental result reports that enhanced features and dual-attention modules reduce error of fitting ~5% and ~11%, respectively.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ACO-Pruning for Deep Neural Networks: A Case Study in CNNs;Proceedings of the Genetic and Evolutionary Computation Conference Companion;2024-07-14

2. Key theory and technology of cemented paste backfill for green mining of metal mines;Green and Smart Mining Engineering;2024-03

3. Research progress and prospects of intelligent technology in underground mining of hard rock mines;Green and Smart Mining Engineering;2024-03

4. DualLSTM: A novel key-quality prediction for a hierarchical cone thickener;Control Engineering Practice;2023-08

5. Underflow concentration prediction based on improved dual bidirectional LSTM for hierarchical cone thickener system;The International Journal of Advanced Manufacturing Technology;2023-05-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3