Underflow concentration prediction based on improved dual bidirectional LSTM for hierarchical cone thickener system

Author:

Lei Yongxiang,Karimi Hamid RezaORCID

Abstract

AbstractIn the practical thickener cone systems, the underflow concentration is hard to measure through physical sensors while there exist the high cost and significant measurement delay. This paper presents a novel and deeply efficient long short-time memory (DE-LSTM) method for concentration prediction in the deep cone thickener system. First, the DE-LSTM for thicker systems is developed for feature learning and long temporal preprocessing. Then, the feedforward and reverse LSTM subnetworks are employed to learn the robust information without loss. At last, the experimental verification of an industrial deep cone thicker demonstrates the proposed DE-LSTM’s performance outperforms other state-of-the-art methods.

Funder

Politecnico di Milano

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Software,Control and Systems Engineering

Reference44 articles.

1. Chen E, Cao H, Li H et al (2021) A big data mining approach for environmental emissions prediction of die casting process. Int J Adv Manuf Technol 114(11–12):3779–3791

2. Gao X, Guo Y, Hanson DA et al (2021) Thermal error prediction of ball screws based on PSO-LSTM. Int J Adv Manuf Technol 116(5–6):1721–1735

3. Lei Y, Chen X, Min M et al (2020) A semi-supervised Laplacian extreme learning machine and feature fusion with CNN for industrial superheat identification. Neurocomputing 381:186–195

4. Lei Y, Karimi HR, Cen L et al (2021) Processes soft modeling based on stacked autoencoders and wavelet extreme learning machine for aluminum plant-wide application. Control Eng Prac 108:104706

5. Huan W, Ting L, Yuning C et al (2019) Underflow concentration prediction model of deep-cone thickener based on data-driven. J China Univ Posts Telecommun 26(6):63

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3