Optimal Method for Test and Repair Memories Using Redundancy Mechanism for SoC

Author:

Alnatheer Suleman,Ahmed Mohammed AltafORCID

Abstract

The current system-on-chip (SoC)-based devices uses embedded memories of enormous size. Most of these systems’ area is dense with memories and promotes different types of faults appearance in memory. The memory faults become a severe issue when they affect the yield of the product. A memory-test and -repair scheme is an attractive solution to tackle this kind of problem. The built-in self-repair (BISR) scheme is a prominent method to handle this issue. The BISR scheme is widely used to repair the defective memories for an SoC-based system. It uses a built-in redundancy analysis (BIRA) circuit to allocate the redundancy when defects appear in the memory. The data are accessed from the redundancy allocation when the faulty memory is operative. Thus, this BIRA scheme affects the area overhead for the BISR circuit when it integrates to the SoC. The spare row and spare column–based BISR method is proposed to receive the optimal repair rate with a low area overhead. It tests the memories for almost all the fault types and repairs the memory by using spare rows and columns. The proposed BISR block’s performance was measured for the optimal repair rate and the area overhead. The area overhead, timing, and repair rate were compared with the other approaches. Furthermore, the study noticed that the repair rate and area overhead would increase by increasing the spare-row/column allocation.

Funder

Prince Sattam Bin Abdulaziz University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Reference27 articles.

1. Semico Research Corp., Semico: System(s)-on-a-Chip–A Braver New World. Semico Researchhttps://semico.com/content/semico-systems-chip-%E2%80%93-braver-new-world

2. Low Cost Test Pattern Generation in Scan-Based BIST Schemes

3. Optimizing Weight Mapping and Data Flow for Convolutional Neural Networks on Processing-in-Memory Architectures

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3