Trade-Offs and Synergies of Multiple Ecosystem Services for Different Land Use Scenarios in the Yili River Valley, China

Author:

Shi Mingjie,Wu Hongqi,Fan Xin,Jia Hongtao,Dong Tong,He Panxing,Baqa Muhammad FahadORCID,Jiang Pingan

Abstract

Environmental managers and policymakers increasingly discuss trade-offs between ecosystem services (ESs). However, few studies have used nonlinear models to provide scenario-specific land-use planning. This study determined the effects of different future land use/land cover (LULC) scenarios on ESs in the Yili River Valley, China, and analyzed the trade-offs and synergistic response characteristics. We simulated land-use changes in the Yili River Valley during 2020–2030 under three different scenarios using a patch-generating land-use simulation (PLUS) model—business as usual (BAU), economic development (ED), and ecological conservation (EC). Subsequently, we evaluated the water yield (WY), carbon storage (CS), soil retention (SR), and nutrient export (NE) ESs by combining the PLUS and integrated valuation of ecosystem services and trade-offs (InVEST) models, thus exploring multiple trade-offs among these four ESs at a regional scale. For the BAU scenario, there are some synergistic effects between WY and SR in the Yili River Valley, in addition to significant trade-off effects between CS and NE. For the ED scenario, the rapid expansion of cropland and constructed land is at the expense of forested grassland, leading to a significant decline in ESs. For the EC scenario, the model predicted that the cumulative regional net future carbon storage, cumulative water retention, and cumulative soil conservation would all increase due to ecological engineering and the revegetation of riparian zones and that formerly steep agricultural land can be effective in improving ESs. Meanwhile, the trade-off effect would be significantly weakened between CS and NE. These results can inform decision makers on specific sites where ecological engineering is implemented. Our findings can enhance stakeholders’ understanding of the interactions between ESs indicators in different scenarios.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3