Framework for Predicting Failure in Polymeric Unidirectional Composites through Combined Experimental and Computational Mesoscale Modeling Techniques

Author:

Khaled Bilal,Shyamsunder Loukham,Robbins Josh,Parakhiya Yatin,Rajan Subramaniam D.

Abstract

As composites continue to be increasingly used, finite element material models that homogenize the composite response become the only logical choice as not only modeling the entire composite microstructure is computationally expensive but obtaining the entire suite of experimental data to characterize deformation and failure may not be possible. The focus of this paper is the development of a modeling framework where plasticity, damage, and failure-related experimental data are obtained for each composite constituent. Mesoscale finite elements models consisting of multiple repeating unit cells are then generated and used to represent a typical carbon fiber/epoxy resin unidirectional composite to generate the complete principal direction stress-strain curves. These models are subjected to various uniaxial states of stress and compared with experimental data. They demonstrate a reasonable match and provide the basic framework to completely define the composite homogenized material model that can be used as a vehicle for failure predictions.

Funder

Federal Aviation Administration

Publisher

MDPI AG

Subject

Mechanics of Materials,Biomaterials,Civil and Structural Engineering,Ceramics and Composites

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3