Microscale modelling of lightning damage in fibre-reinforced composites

Author:

Millen Scott L J1ORCID,Lee Juhyeong2ORCID

Affiliation:

1. School of Mechanical and Aerospace Engineering, Queen’s University Belfast, Belfast, UK

2. Department of Mechanical and Aerospace Engineering, Utah State University, Logan, UT, USA

Abstract

In this work, three-dimensional (3D) finite element simulations were undertaken to study the effects of lightning strikes on the microscale behaviour of continuous fibre-reinforced composite materials and to predict and understand complex lightning damage mechanisms. This approach is different from the conventional mesoscale or macroscale level of analysis, that predicts the overall lightning damage in composite laminates, thus providing better understanding of lightning-induced thermo-mechanical damage at a fundamental level. Micromechanical representative volume element (RVE) models of a UD composite laminate were created with circular carbon fibres randomly distributed in an epoxy matrix. The effects of various grounding conditions (one-, two-, and four-side grounding), fibre volume fractions ( V f = 55, 60%, and 65%), and peak current amplitudes (10, 20, and 40 kA) on microscopic damage in RVE models were characterised to understand fibre, epoxy matrix, and fibre-matrix interfacial damage associated with a lightning strike. Thermal damage, estimated based on epoxy matrix decomposition temperature, was largely constant up to 20 kA before increasing significantly at 40 kA. Severe thermal damage steadily decreased with increasing V f. Thermo-mechanical damage was predicted using a ductile plasticity model with Drucker–Prager yield criterion for epoxy matrix failure, and cohesive surfaces for fibre-matrix interface debonding. Thermal strain had the largest contribution to thermo-mechanical damage, while dynamic pressure loading was negligible in all RVE models. The RVE model proposed in this work, to the best of the authors’ knowledge, is the first model predicting lightning-induced fibre-matrix interfacial damage.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3