Evaluation of Camera Recognition Performance under Blockage Using Virtual Test Drive Toolchain

Author:

Son Sungho12ORCID,Lee Woongsu1,Jung Hyungi1,Lee Jungki1,Kim Charyung1,Lee Hyunwoo1ORCID,Park Hyungwon1,Lee Hyunmi3ORCID,Jang Jeongah3ORCID,Cho Sungwan4,Ryu Han-Cheol2ORCID

Affiliation:

1. Department of Future Vehicle Research, Korea Automobile Testing and Research Institute, Hwaseong 18247, Republic of Korea

2. Department of Artificial Intelligence Convergence, University of Sahmyook, Seoul 01795, Republic of Korea

3. TOD Based Transportation Research Center, University of Ajou, Suwon 16499, Republic of Korea

4. Department of Advanced Development, Techways, Yongin 16942, Republic of Korea

Abstract

This study is the first to develop technology to evaluate the object recognition performance of camera sensors, which are increasingly important in autonomous vehicles owing to their relatively low price, and to verify the efficiency of camera recognition algorithms in obstruction situations. To this end, the concentration and color of the blockage and the type and color of the object were set as major factors, with their effects on camera recognition performance analyzed using a camera simulator based on a virtual test drive toolkit. The results show that the blockage concentration has the largest impact on object recognition, followed in order by the object type, blockage color, and object color. As for the blockage color, black exhibited better recognition performance than gray and yellow. In addition, changes in the blockage color affected the recognition of object types, resulting in different responses to each object. Through this study, we propose a blockage-based camera recognition performance evaluation method using simulation, and we establish an algorithm evaluation environment for various manufacturers through an interface with an actual camera. By suggesting the necessity and timing of future camera lens cleaning, we provide manufacturers with technical measures to improve the cleaning timing and camera safety.

Funder

Korea Agency for Infrastructure Technology Advancement

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3