A LiDAR–Camera Fusion 3D Object Detection Algorithm

Author:

Liu Leyuan,He Jian,Ren Keyan,Xiao Zhonghua,Hou Yibin

Abstract

3D object detection with LiDAR and camera fusion has always been a challenge for autonomous driving. This work proposes a deep neural network (namely FuDNN) for LiDAR–camera fusion 3D object detection. Firstly, a 2D backbone is designed to extract features from camera images. Secondly, an attention-based fusion sub-network is designed to fuse the features extracted by the 2D backbone and the features extracted from 3D LiDAR point clouds by PointNet++. Besides, the FuDNN, which uses the RPN and the refinement work of PointRCNN to obtain 3D box predictions, was tested on the public KITTI dataset. Experiments on the KITTI validation set show that the proposed FuDNN achieves AP values of 92.48, 82.90, and 80.51 at easy, moderate, and hard difficulty levels for car detection. The proposed FuDNN improves the performance of LiDAR–camera fusion 3D object detection in the car category of the public KITTI dataset.

Publisher

MDPI AG

Subject

Information Systems

Reference37 articles.

1. Multi-modal 3d object detection in autonomous driving: A survey;Wang;arXiv,2021

2. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3