Dynamic Modeling and Simulation of Basic Oxygen Furnace (BOF) Operation

Author:

Dering Daniela,Swartz ChristopherORCID,Dogan Neslihan

Abstract

Basic oxygen furnaces (BOFs) are widely used to produce steel from hot metal. The process typically has limited automation which leads to sub-optimal operation. Economically optimal operation can be potentially achieved by using a dynamic optimization framework to provide operators the best combination of input trajectories. In this paper, a first-principles based dynamic model for the BOF that can be used within the dynamic optimization routine is described. The model extends a previous work by incorporating a model for slag formation and energy balances. In this new version of the mathematical model, the submodel for the decarburization in the emulsion zone is also modified to account for recent findings, and an algebraic equation for the calculation of the calcium oxide saturation in slag is developed. The dynamic model is then used to simulate the operation of two distinct furnaces. It was found that the prediction accuracy of the developed model is significantly superior to its predecessor and the number of process variables that it is able to predict is also higher.

Funder

Ontario Centres of Excellence

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference36 articles.

1. Fact Sheet: Steel and Raw Materials https://www.worldsteel.org/publications/fact-sheets.html

2. The reaction behavior of Fe-C-S droplets in CaO-SiO2-MgO-FeO slags

3. Kinetic study of droplet swelling in BOF steelmaking

4. Experiences in physicochemical modelling of oxygen converter process (BOF);Jalkanen;Adv. Process. Met. Mater.,2006

5. Dynamic Modeling of the Main Blow in Basic Oxygen Steelmaking Using Measured Step Responses

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3