Oxygen Demand Forecasting and Optimal Scheduling of the Oxygen Gas Systems in Iron- and Steel-Making Enterprises

Author:

Cheng Zhen1,Zhang Peikun1ORCID,Wang Li1ORCID

Affiliation:

1. School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China

Abstract

Due to the imbalance between the supply and demand of oxygen, the oxygen systems of iron- and steel-making enterprises in China have problems with high oxygen emissions and high pressure in the pipelines, resulting in the energy consumption of oxygen production being high. To reduce the energy consumption of oxygen systems, this study took a large-scale iron- and steel-making enterprise as a case study and developed a two-stage forecasting and scheduling model. The novel aspect and progressiveness of this work are as follows: First, an oxygen demand forecasting model was developed based on the backpropagation neural network with genetic algorithm optimization (GABP) and is driven only by historical data. Compared with some complex models in the literature, although the accuracy of this model has been reduced, the model does not need to consider production plans for other process steps, making it more practical and feasible. Second, different from the existing literature, an oxygen production scheduling model was developed for load-variable ASUs with an internal compression process, and both the oxygen emissions and pipeline pressure are included in the objective function. The case study showed that based on the oxygen demand forecast and optimal scheduling, the oxygen emissions and pipeline pressure in the studied iron- and steel-making enterprise can be significantly reduced, thereby achieving considerable energy-saving effects and economic benefits. Specifically, the following conclusions were obtained: (1) For the oxygen demand forecast, the prediction accuracy of the GABP model was better than that of the ARIMA model. The average MAPE of the 12 sets of data of the ARIMA and GABP models was 23.8% and 20.2%, respectively. (2) By comparing the scheduling results and the field data, it was found that after scheduling, the amount of oxygen emissions decreased by 6.32%, the pipeline pressure decreased by 0.61%, and the energy consumption of oxygen compression decreased by 1.6%. Considering both the oxygen emission loss and the energy consumption of oxygen compression, the total power consumption of the studied oxygen system was reduced by 1.38%, resulting in electricity cost savings of approximately 9.03 million RMB per year.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3