Texture Classification Using Spectral Entropy of Acoustic Signal Generated by a Human Echolocator

Author:

Raja Abdullah ,Saleh ,Syed Abdul Rahman ,Zamri ,Rashid

Abstract

Human echolocation is a biological process wherein the human emits a punctuated acoustic signal, and the ear analyzes the echo in order to perceive the surroundings. The peculiar acoustic signal is normally produced by clicking inside the mouth. This paper utilized this unique acoustic signal from a human echolocator as a source of transmitted signal in a synthetic human echolocation technique. Thus, the aim of the paper was to extract information from the echo signal and develop a classification scheme to identify signals reflected from different textures at various distance. The scheme was based on spectral entropy extracted from Mel-scale filtering output in the Mel-frequency cepstrum coefficient of a reflected echo signal. The classification process involved data mining, features extraction, clustering, and classifier validation. The reflected echo signals were obtained via an experimental setup resembling a human echolocation scenario, configured for synthetic data collection. Unlike in typical speech signals, extracted entropy from the formant characteristics was likely not visible for the human mouth-click signals. Instead, multiple peak spectral features derived from the synthesis signal of the mouth-click were assumed as the entropy obtained from the Mel-scale filtering output. To realize the classification process, K-means clustering and K-nearest neighbor processes were employed. Moreover, the impacts of sound propagation toward the extracted spectral entropy used in the classification outcome were also investigated. The outcomes of the classifier performance herein indicated that spectral entropy is essential for human echolocation.

Funder

Universiti Putra Malaysia

Ministry of Higher Education, Malaysia

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3