Methyl-Trimethoxy-Siloxane-Modified Mg-Al-Layered Hydroxide Filler for Thermal-Insulation Coatings

Author:

Zhao Yanhua1,Shen Guanhua1,Wang Yongli1,Hao Xiangying1,Li Huining2

Affiliation:

1. Guangdong Provincial Key Laboratory of Environmental Health and Land Resource, College of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, China

2. Zhaoqing Rivers High-Tech Materials Co., Ltd., Zhaoqing 526061, China

Abstract

The development of high-performance insulation materials that facilitate the reduction in building energy consumption is of paramount significance. In this study, magnesium–aluminum-layered hydroxide (LDH) was prepared by the classical hydrothermal reaction. By implementing methyl trimethoxy siloxane (MTS), two different MTS-functionalized LDHs were prepared via a one-step in situ hydrothermal synthesis method and a two-step method. Furthermore, using techniques, such as X-ray diffraction, infrared spectroscopy, particle size analysis, and scanning electron microscopy, we evaluated and analyzed the composition, structure, and morphology of the various LDH samples. These LDHs were then employed as inorganic fillers in waterborne coatings, and their thermal-insulation capabilities were tested and compared. It was found that MTS-modified LDH via a one-step in situ hydrothermal synthesis method (M-LDH-2) exhibited the best thermal insulating properties by displaying a thermal-insulation-temperature difference (ΔT) of 25 °C compared with the blank panel. In contrast, the panels coated with unmodified LDH and the MTS-modified LDH via the two-step method exhibited thermal-insulation-temperature difference values of 13.5 °C and 9.5 °C, respectively. Our investigation involved a comprehensive characterization of LDH materials and coating films, unveiling the underlying mechanism of thermal insulation and establishing the correlation between LDH structure and the corresponding insulation performance of the coating. Our findings reveal that the particle size and distribution of LDHs are critical factors in dictating their thermal-insulation capabilities in the coatings. Specifically, we observed that the MTS-modified LDH, prepared via a one-step in situ hydrothermal approach, possessed a larger particle size and wider particle size distribution, resulting in superior thermal-insulation effectiveness. In contrast, the MTS-modified LDH via the two-step method exhibited a smaller particle size and narrow particle size distribution, causing a moderate thermal-insulation effect. This study has significant implications for opening up the potential for LDH-based thermal-insulation coatings. We believe the findings can promote the development of new products and help upgrade industries, while contributing to local economic growth.

Funder

Zhaoqing University

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3