A Novel Fault Detection and Classification Strategy for Photovoltaic Distribution Network Using Improved Hilbert–Huang Transform and Ensemble Learning Technique

Author:

Nsaif Younis M.ORCID,Hossain Lipu Molla ShahadatORCID,Hussain AiniORCID,Ayob AfidaORCID,Yusof Yushaizad,Zainuri Muhammad Ammirrul A. M.ORCID

Abstract

Due to the increased integration of distributed generations in distributed networks, their development and operation are facing protection challenges that traditional protection systems are incapable of addressing. These problems include variations in the fault current during various operation modes, diverse distributed network topology, and high impedance faults. Therefore, appropriate and reasonable fault detection is highly encouraged to improve the protection and dependability of the distributed network. This paper proposes a novel technique that employs an improved Hilbert–Huang Transform (HHT) and ensemble learning techniques to resolve these challenges in a photovoltaic distributed network. First, improved HHT is utilized to extract energy features from the current signal. Second, variational mode decomposition (VMD) is applied to extract the intrinsic mode function from the zero component of the current signal. Then, the acquired energy feature and intrinsic mode function are input to the ensemble learning technique for fault detection and classification. The proposed technique is implemented using MATLAB software environment, including a classification learner app and SIMULINK. An evaluation of the results is conducted under normal connected mode (NCM) and island mode (ISM) for radial and mesh-soft normally open point (SNOP) configurations. The accuracy of the ensemble bagged trees technique is higher when compared to the narrow-neural network, fine tree, quadratic SVM, fine-gaussian SVM, and wide-neural network. The presented technique depends only on local variables and has no requirements for connection latency. Consequently, the detection and classification of faults using the proposed technology are reasonable. The simulation results demonstrate that the proposed technique is superior to the neural network and support vector machine, achieving 100%, 99.2% and 99.7% accurate symmetrical and unsymmetrical fault detection and classification throughout NCM, ISM, and dynamic operation mode, respectively. Moreover, the developed technique protects DN effectively in radial and mesh-SNOP topologies. The suggested strategy can detect and classify faults accurately in DN with/without DGs. Additionally, this technique can precisely detect high and low impedance faults within 4.8 ms.

Funder

University Kebangsaan Malaysia

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3