Cold Chain Energy Analysis for Sustainable Food and Beverage Supply

Author:

Marchi BeatriceORCID,Zanoni SimoneORCID

Abstract

Perishable goods, such as chilled and frozen foods, have a short shelf life and high sensitivity to their surrounding environment (e.g., temperature, humidity, and light intensity). For this reason, they must be distributed within a specific time and require special equipment and facilities (e.g., refrigeration and dehumidification systems) throughout the entire chain from farm to fork to ensure slow deterioration and to deliver safe and high-quality products to consumers. Cold chains can last for short periods, such as a few hours, or for several months or even years (e.g., frozen food products) depending on the product and the target market. A huge amount of energy is required to preserve quality by maintaining the desired temperature level over time. The required energy is also affected by inventory management policies (e.g., warehouse filling levels affect the cooling demand per unit of a product) and the behavior of the operators (e.g., number and duration of door openings). Furthermore, waste entails the loss of energy and other resources consumed for processing and storing these products. The aim of the present study is to propose a quantitative approach in order to map the energy flows throughout the cold chain in the food and beverage sector and to evaluate the overall energy performance. The results of the energy flow mapping give decisionmakers insights into the minimum energy required by the cold chain and allow them to prioritize energy efficiency measures by detecting the most energy consuming stages of the cold chain. The implementation of a holistic approach, shifting from a single-company perspective to chain assessment, leads to a global optimum and to an increased implementation rate of energy efficiency measures due to the reduced barriers perceived by different actors of the cold chain.

Funder

European Commission

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference23 articles.

1. Supply chain finance for ameliorating and deteriorating products: a systematic literature review

2. Sustainable Energy Solutions to ‘Cold Chain’ Food Supply Issues. Brief for GSDR–2016 Update https://sustainabledevelopment.un.org/content/documents/968624_Kefalidou_Sustainable%20energy%20solutions%20to-cold%20chain-food%20supply%20issues.pdf

3. Time-temperature abuse in the food cold chain: Review of issues, challenges, and recommendations

4. The Impact of Reducing Food Loss in The Global Cold Chain;Winkworth-Smith,2015

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3