Abstract
Rear-end collisions are caused by drivers misjudging urgent risks while following vehicles ahead in most cases. However, compared with other accident types, rear-end collisions have higher preventability. This study aims to reveal the prone segments and hours of rear-end collisions. First, we extracted 1236 cases from traffic accident records in Harbin from 2015 to 2019. These accidents are classified as property damage accidents, injury accidents and fatal accidents according to the collision severity. Second, density analysis in GIS was used to demonstrate the spatial distribution of rear-end collisions. The collision spots considering the density and severity were visually displayed. We counted the hourly and seasonal distribution characteristics according to the statistical data. Finally, LightGBM and random forest classifier models were used to evaluate the substantial factors affecting accident severity. The results have potential practical value in rear-end collision warning and prevention.
Funder
Fundamental Research Funds for the Central Universities Category D Project Carbon Neutraliza-tion Project
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献