Analysis of following vehicle driver injury severity in rear-end collision on straight road based on LightGBM and SHAP

Author:

Wei Tianzheng1ORCID,Zhu Tong2

Affiliation:

1. School of Transportation and Logistics Engineering, Shandong Jiaotong University, Jinan, China

2. College of Transportation Engineering, Chang’an University, Xi’an, China

Abstract

Rear-end accidents, as one of the common accident types, may cause serious injuries to the driver and passengers. There are mutual coupling effects among causal features of rear-end accidents, and traditional analytical methods may lead to modeling distortion due to assumption constraints. In this study, the Light Gradient Boosting Machine (LightGBM), a machine learning algorithm, is used to model the injury severity of the following vehicle driver in a rear-end crash accident on a straight road, based on the data from the China In-depth Accident Study data. The Shapley Additive Explanations (SHAP) method was used to interpret the results of the LightGBM model and to analyze the relationship between factors and driver injury severity. The results show that location familiarity, willingness to take risks, and driving time have a significant impact on the injury severity for following vehicle drivers involved in rear-end crashes. Cloudy conditions increase a driver’s risk of being involved in a fatal or injured rear-end collision. In rain, snow, hail, and foggy conditions, have a higher propensity to cause driver fatalities in the crash event. The rear-end crash of passenger cars resulted in a higher death probability of the following vehicle driver compared to sedan and truck, and female drivers are more likely to be involved in uninjured accidents compared to males. These results are informative for preventing rear-end accidents and reducing the extent of accidental injuries.

Funder

National Key R&D Program of China

Scientific Research Foundation of Shandong Jiaotong University

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3