A Practical Approach to Launch the Low-Cost Monitoring Platforms for Nearly Net-Zero Energy Buildings in Vietnam

Author:

VU Thi Tuyet Hong,DELINCHANT BenoitORCID,PHAN Anh Tuan,BUI Van CongORCID,NGUYEN Dinh QuangORCID

Abstract

Buildings with solar rooftops have become vital objects in the energy transition in Vietnam. In this context, the demand for research on energy management solutions to use energy efficiently and increase PV energy absorption capacity is rising. In this paper, we present a practical route to developing a low-cost monitoring platform to meet the building energy management in the country. First, our project built a monitoring architecture with high-density wireless sensors in an office building in Vietnam. Next, we discussed the influence of significant obstacles such as technical issues, users, and cost on the resilience and reliability of the monitoring system. Then, we proposed essential solutions for data quality improvement by testing sensors, detecting wireless sensor network errors, and compensating for data losses by embedding machine learning. We found the platform’s potential in developing a rich database of building characteristics and occupants. Finally, we proposed plans exploiting the data to reduce wasted energy in equipment operation, change user behaviors, and increase auto-consumption PV power. The effectiveness of the monitoring platform was an approximate 62% energy reduction in the first year. The results are a cornerstone for implementing advanced research as modeling and real-time optimal control toward nearly zero-energy buildings.

Funder

NVCC

Agence Nationale de la Recherche

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference31 articles.

1. Further Advancing Energy Efficiency in High-Rise Residential and Commercial Buildings|UNDP in Viet Nam https://www.vn.undp.org/content/vietnam/en/home/presscenter/pressreleases/further-advancing-energy-efficiency-in-high-rise-residential-and.html

2. Review of Potential and Actual Penetration of Solar Power in Vietnam

3. Decision of the Prime Minister No. 428/QD-TTg of 2016 on the Approval of the Revised National Power Development Master Plan for the 2011–2020 Period with the Vision to 2030|ESCAP Policy Documents Managment https://policy.asiapacificenergy.org/node/2760

4. Văn Bản Quy Phạm Pháp Luật http://vanban.chinhphu.vn/portal/page/portal/chinhphu/hethongvanban?class_id=1&_page=1&mode=detail&document_id=199694

5. Press Release on Rooftop Solar PV Development after 31 December 2020 https://en.evn.com.vn/d6/news/Press-release-on-rooftop-solar-PV-development-after-31-December-2020-66-142-2111.aspx

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3