Status, Challenges and Future Directions in the Evaluation of Net-Zero Energy Building Retrofits: A Bibliometrics-Based Systematic Review

Author:

Xiaoxiang Qin12,Junjia Yin1ORCID,Haron Nuzul Azam1ORCID,Alias Aidi Hizami1ORCID,Law Teik Hua1ORCID,Abu Bakar Nabilah1ORCID

Affiliation:

1. Department of Civil Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43300, Selangor, Malaysia

2. School of Architectural Engineering, Nanning Vocational and Technical University, Nanning 530008, China

Abstract

Net-zero energy building (NZEB), an initiative to address energy conservation and emission reduction, has received widespread attention worldwide. This study aims to systematically explore recent challenges in NZEB retrofit research through a mixed-method approach and provide recommendations and future directions. A review of 106 documents (2020–2024) retrieved from the Web of Science and Scopus databases found that the globalization of NZEB retrofit research is unstoppable. Assessment methods are diverse, ranging from modeling energy efficiency (using different software such as DesignBuilder 7.0, PVsyst 7.4, EnergyPlus 24.1.0, etc.) to multi-attribute decision-making methods (e.g., DEMATEL-AHP/ANP-VIKOR) and comparative analysis. Current assessment metrics are dominated by economic benefits (e.g., net present value, dynamic payback period, and total operating cost) and energy consumption (e.g., electricity consumption and generation), with less consideration of environmental impacts (e.g., carbon reduction), as well as comfort (e.g., thermal comfort and indoor comfort). The study found that current challenges mainly include “Low economic feasibility of retrofitting”, “Building retrofit energy code irrationality”, and “Insufficient understanding, communication, and trust between stakeholders”. To overcome these challenges, the study also proposes a framework of strategies to address them, including (1) maximizing natural space, (2) introducing a tenant equity system, (3) upgrading waste management, (4) strengthening energy monitoring, (5) establishing complete life cycle mechanisms, (6) providing systemic solutions; (7) promoting the use of low-carbon building materials, and (8) increasing policy support.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3