Abstract
When gas hydrates dissociate into gas and liquid water, many gas bubbles form in the water. The large bubbles disappear after several minutes due to their buoyancy, while a large number of small bubbles (particularly sub-micron-order bubbles known as ultra-fine bubbles (UFBs)) remain in the water for a long time. In our previous studies, we demonstrated that the existence of UFBs is a major factor promoting gas hydrate formation. We then extended our research on this issue to carbon dioxide (CO2) as it forms structure-I hydrates, similar to methane and ethane hydrates explored in previous studies; however, CO2 saturated solutions present severe conditions for the survival of UFBs. The distribution measurements of CO2 UFBs revealed that their average size was larger and number density was smaller than those of other hydrocarbon UFBs. Despite these conditions, the CO2 hydrate formation tests confirmed that CO2 UFBs played important roles in the expression of the promoting effect. The analysis showed that different UFB preparation processes resulted in different promoting effects. These findings can aid in better understanding the mechanism of the promoting (or memory) effect of gas hydrate formation.
Funder
the Tonen General Sekiyu Research/Development Encouragement & Scholarship Foundation
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献