A New Silicon Mold Process for Polydimethylsiloxane Microchannels

Author:

Yang Lung-Jieh1ORCID,Shaik Sameer1,Unnam Neethish Kumar1ORCID,Muthuraman Valliammai2

Affiliation:

1. Department of Mechanical and Electromechanical Engineering, Tamkang University, New Taipei 251301, Taiwan

2. Department of Electronics and Communication Engineering, Vel Tech Rangarajan Dr Sagunthala R&D Institute of Science and Technology, Chennai 600062, India

Abstract

As an alternative to SU-8 soft lithography, a new silicon mold process of fabricating PDMS microchannel chips was proposed. A picosecond laser is used to cut through a 550 μm thick silicon wafer and generate the original microchannel pattern with a 50 μm minimum feature size. This single-crystal silicon pattern, with the edge debris caused by laser cutting being trimmed off by a KOH solution and with the protection field oxide layer being removed by BOE afterwards, firmly resided on a glass substrate through the anodic bonding technique. Four-inch wafers with microchannel patterns as the PDMS mold cores were successfully bonded on Pyrex 7740 or Eagle XG glass substrates for the follow-up PDMS molding/demolding process. This new maskless process does not need a photolithography facility, but the laser cutting service must be provided by professional off-campus companies. One PDMS microchannel chip for particle separation was shown as an example of what can be achieved when using this new process.

Funder

Taiwan’s National Science and Technology Council

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3