Testing Proximal Optical Sensors on Quinoa Growth and Development

Author:

Alvar-Beltrán JorgeORCID,Fabbri Carolina,Verdi LeonardoORCID,Truschi Stefania,Dalla Marta AnnaORCID,Orlandini SimoneORCID

Abstract

Proximal optical sensors (POSs) are effective devices for monitoring the development of crops and the nitrogen (N) status of plants. POSs are both useful and necessary in facilitating the reduction of N losses into the environment and in attaining higher nitrogen use efficiency (NUE). To date, no comparison of these instruments has been made on quinoa. A field experiment conducted in Tuscany, Italy, with different POSs, has assessed the development of quinoa with respect to N status. Three sets of POSs were used (SPAD-502, GreenSeeker, and Canopeo App.) to monitor quinoa development and growth under different types of fertilizers (digestate and urea) and levels of N fertilization (100, 50, and 0 kg N ha−1). The present findings showed that in-season predictions of crop biomass at harvest by SPAD-502 and GreenSeeker optical sensors were successful in terms of the coefficient of determination (R2 = 0.68 and 0.82, respectively) and statistical significance (p < 0.05), while the Canopeo App. was suitable for monitoring the plant´s canopy expansion and senescence. The relative error (RE%) showed a remarkably high performance between observed and predicted values, 5.80% and 4.12% for GreenSeeker and SPAD-502, respectively. Overall, the POSs were effective devices for monitoring quinoa development during the growing season and for predicting dry biomass at harvest. However, abiotic stresses (e.g., heat-stress conditions at flowering) were shown to reduce POSs’ accuracy when estimating seed yields at harvest, and this problem will likely be overcome by advancing the sowing date.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3