Canopeo app as image-based phenotyping tool in controlled environment utilizing Arabidopsis mutants

Author:

Hale GabriellaORCID,Yuan Ning,Mendu Lavanya,Ritchie Glen,Mendu VenugopalORCID

Abstract

Canopeo app was developed as a simple, accurate, rapid, and free tool to analyze ground cover fraction (GCF) from red-green-blue (RGB) images and videos captured in the field. With increasing interest in tools for plant phenotyping in controlled environments, the usefulness of Canopeo to identify differences in growth among Arabidopsis thaliana mutants in a controlled environment were explored. A simple imaging system was used to compare Arabidopsis mutants based on the FLAVIN-BINDING, KELCH REPEAT, F-BOX-1 (FKF1) mutation, which has been identified with increased biomass accumulation. Two FKF1 lines such as null expression (fkf1-t) and overexpression (FKF1-OE) lines were used along with wild type (Col-0). Canopeo was used to phenotype plants, based on biomass estimations. Under long-day photoperiod, fkf1-t had increased cellulose biosynthesis, and therefore biomass. Resource partitioning favored seedling vigor and delayed onset of senescence. In contrast, FKF1-OE illustrated a determinative growth habit where plant resources are primarily allocated for seed production. This study demonstrates the use of Canopeo for model plants and highlights its potential for phenotyping broadleaved crops in controlled environments. The value of adapting Canopeo for lab use is those with limited experience and resources have access to phenotyping methodology that is simple, accessible, accurate, and cost-efficient in a controlled environment setting.

Publisher

Public Library of Science (PLoS)

Reference53 articles.

1. A Review on Sensing Technologies for High-Throughput Plant Phenotyping.;Z. Ma;IEEE Open Journal of Instrumentation and Measurement,2022

2. , A remotely sensed pigment index reveals photosynthetic phenology in evergreen conifers.;J. A. Gamon;Proceedings of the National Academy of Sciences—PNAS,2016

3. , Mechanistic evidence for tracking the seasonality of photosynthesis with solar-induced fluorescence.;T. S. Magney;Proceedings of the National Academy of Sciences—PNAS,2019

4. Advances in Microclimate Ecology Arising from Remote Sensing;F. Zellweger;Trends in ecology & evolution (Amsterdam),2019

5. High-throughput phenotyping to detect drought tolerance QTL in wild barley introgression lines;N. Honsdorf;PloS one,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3