Abstract
Globally, urban areas are rapidly expanding and high-quality remote sensing products are essential to help guide such development towards efficient and sustainable pathways. Here, we present an algorithm to address a common problem in digital aerial photogrammetry (DAP)-based image point clouds: vertical mis-registration. The algorithm uses the ground as inferred from airborne laser scanning (ALS) data as a reference surface and re-aligns individual point clouds to this surface. We demonstrate the effectiveness of the proposed method for the city of Kuopio, in central Finland. Here, we use the standard deviation of the vertical coordinate values as a measure of the mis-registration. We show that such standard deviation decreased substantially (more than 1.0 m) for a large proportion (23.2%) of the study area. Moreover, it was shown that the method performed better in urban and suburban areas, compared to vegetated areas (parks, forested areas, and so on). Hence, we demonstrate that the proposed algorithm is a simple and effective method to improve the quality and usability of DAP-based point clouds in urban areas.
Subject
General Earth and Planetary Sciences
Reference31 articles.
1. A Meta-Analysis of Global Urban Land Expansion
2. Understanding an urbanizing planet: Strategic directions for remote sensing
3. Global Change and the Ecology of Cities
4. Human settlements, infrastructure and spatial planning;Seto,2014
5. Automatic 3D building reconstruction from a dense image matching dataset;McClune;Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.,2016
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献