A Framework for Rapid Robotic Application Development for Citizen Developers

Author:

Panayiotou KonstantinosORCID,Tsardoulias EmmanouilORCID,Zolotas Christoforos,Symeonidis Andreas L.ORCID,Petrou Loukas

Abstract

It is common knowledge among computer scientists and software engineers that ”building robotics systems is hard”: it includes applied and specialized knowledge from various scientific fields, such as mechanical, electrical and computer engineering, computer science and physics, among others. To expedite the development of robots, a significant number of robotics-oriented middleware solutions and frameworks exist that provide high-level functionality for the implementation of the in-robot software stack, such as ready-to-use algorithms and sensor/actuator drivers. While the aforementioned focus is on the implementation of the core functionalities and control layer of robots, these specialized tools still require extensive training, while not providing the envisaged freedom in design choices. In this paper, we discuss most of the robotics software development methodologies and frameworks, analyze the way robotics applications are built and propose a new resource-oriented architecture towards the rapid development of robot-agnostic applications. The contribution of our work is a methodology and a model-based middleware that can be used to provide remote robot-agnostic interfaces. Such interfaces may support robotics application development from citizen developers by reducing hand-coding and technical knowledge requirements. This way, non-robotics experts will be able to integrate and use robotics in a wide range of application domains, such as healthcare, home assistance, home automation and cyber–physical systems in general.

Publisher

MDPI AG

Reference47 articles.

1. Designing Embedded Hardware: Create New Computers and Devices;Catsoulis,2005

2. Probabilistic robotics

3. Robotic frameworks, architectures and middleware comparison;Tsardoulias;arXiv,2017

4. Low-code platform for automating business processes in manufacturing

5. Comparative study of IoT protocols;Elhadi,2018

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3