Helicopter Rotor Thickness Noise Control Using Unsteady Force Excitation

Author:

Shi Yongjie,Li Teng,He Xiang,Dong Linghua,Xu Guohua

Abstract

The low-frequency in-plane thickness noise generating from the displacement of air by rotating blades has an important influence on helicopter detection. An on-blade control technique to reduce thickness noise is developed in this paper based on the principle of sound field cancellation. Following the theoretical study on the mechanism of thickness noise reduction using in-plane unsteady force, a 2-m diameter rotor with an active trailing-edge winglet are designed and tested in a fully anechoic chamber. The winglet installed on the outboard blade is used to generate the unsteady force and anti-noise to counteract the thickness noise. The results demonstrate that effective reduction of thickness noise up to 3 dB is achieved in the front of the rotor when the winglet is under the one-harmonic control with 3 ° of deflection angle. Moreover, the experiments of frequency, amplitude, and phase scanning are carried out to study the parametric effects of winglet motions on noise reduction. The ability of noise reduction is proportional to the deflection amplitude of the winglet in each frequency. The control phase determines where noise can be reduced. There is an optimal phase angle at each frequency to minimize the noise at the observations, and it varies with different frequencies. The relationship among observation position, control phase, and frequency is derived, and the approximate expression of the optimal phase is presented.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3