SDD-CNN: Small Data-Driven Convolution Neural Networks for Subtle Roller Defect Inspection

Author:

Xu Xiaohang,Zheng Hong,Guo Zhongyuan,Wu Xiongbin,Zheng ZhaohuiORCID

Abstract

Roller bearings are some of the most critical and widely used components in rotating machinery. Appearance defect inspection plays a key role in bearing quality control. However, in real industries, bearing defects are usually extremely subtle and have a low probability of occurrence. This leads to distribution discrepancies between the number of positive and negative samples, which makes intelligent data-driven inspection methods difficult to develop and deploy. This paper presents a small data-driven convolution neural network (SDD-CNN) for roller subtle defect inspection via an ensemble method for small data preprocessing. First, label dilation (LD) is applied to solve the problem of an imbalance in class distribution. Second, a semi-supervised data augmentation (SSDA) method is proposed to extend the dataset in a more efficient and controlled way. In this method, a coarse CNN model is trained to generate ground truth class activation and guide the random cropping of images. Third, four variants of the CNN model, namely, SqueezeNet v1.1, Inception v3, VGG-16, and ResNet-18, are introduced and employed to inspect and classify the surface defects of rollers. Finally, a rich set of experiments and assessments is conducted, indicating that these SDD-CNN models, particularly the SDD-Inception v3 model, perform exceedingly well in the roller defect classification task with a top-1 accuracy reaching 99.56%. In addition, the convergence time and classification accuracy for an SDD-CNN model achieve significant improvement compared to that for the original CNN. Overall, using an SDD-CNN architecture, this paper provides a clear path toward a higher precision and efficiency for roller defect inspection in smart manufacturing.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3