Publisher
Springer Science and Business Media LLC
Reference29 articles.
1. Bang, H.-T., Park, S., & Jeon, H. (2020). Defect identification in composite materials via thermography and deep learning techniques. Composite Structures, 246, 112405. https://doi.org/10.1016/j.compstruct.2020.112405
2. Bhatt, P. M., Malhan, R. K., Rajendran, P., Shah, B. C., Thakar, S., Yoon, Y. J., & Gupta, S. K. (2021). Image-based surface defect detection using deep learning: A review. Journal of Computing and Information Science in Engineering, DOI, 10(1115/1), 4049535.
3. Chen, J. C., Guo, G., & Wang, W.-N. (2020). Artificial neural network-based online defect detection system with in-mold temperature and pressure sensors for high precision injection molding. The International Journal of Advanced Manufacturing Technology. https://doi.org/10.1007/s00170-020-06011-4
4. Czimmermann, T., Ciuti, G., Milazzo, M., Chiurazzi, M., Roccella, S., Oddo, C. M., & Dario, P. (2020). Visual-based defect detection and classification approaches for industrial applications—A survey. Sensors. https://doi.org/10.3390/s20051459
5. Fu, G., Sun, P., Zhu, W., Yang, J., Cao, Y., Yang, M. Y., & Cao, Y. (2019). A deep-learning-based approach for fast and robust steel surface defects classification. Optics and Lasers in Engineering, 121, 397–405. https://doi.org/10.1016/j.optlaseng.2019.05.005