Study on Disaster Mechanism of Oil and Gas Pipeline Oblique Crossing Landslide

Author:

A Fa-You12,Chen Teng-Hui3,Yang Cheng1,Wu Yu-Feng1,Yan Shi-Qun1

Affiliation:

1. Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China

2. Key Laboratory of Geohazard Forecast and Geoecological Restoration in Plateau Mountainous Area, Ministry of Natural Resources of the People’s Republic of China, Kunming 650000, China

3. Shenzhen Water Planning & Design Institute Co., Ltd., Shenzhen 518000, China

Abstract

Landslides are one of the most serious geological disasters in oil and gas pipelines. According to investigations, the cross-cutting relationship between landslides and pipelines can be divided into three types: pipeline longitudinal crossing landslide, pipeline transversely crossing landslide, and pipeline oblique crossing landslide. This different cross-cutting relationship is one of the important factors affecting pipeline landslide disasters. As a result, it is necessary to study the stress and deformation characteristics of oil and gas pipelines under different cross-cutting relationships, which is of great significance for the prevention and control of oil and gas pipeline landslides. In this paper, an ideal pipe-soil coupling interaction model of oil and gas pipeline oblique crossing landslide was established using FLAC3D. The influence of the buried depth of the pipeline, the displacement of the sliding body, and the different intersection angles of landslide and pipeline on the deformation and stress of the pipeline under the action of a landslide is analyzed, and a typical case of pipeline oblique crossing landslide is used for analysis. The results demonstrated that the stress of pipeline oblique crossing landslide is complex, and the stress concentration is obvious at the shear outlet and the trailing edge of the landslide. The stress at the shear outlet is the largest, which should be regarded as the key location. The displacement and stress of pipeline oblique crossing landslide are obviously affected by the displacement of the sliding body and the buried depth of the pipeline. The displacement and stress of the pipeline increase significantly with the increase of the displacement of the sliding body. With the increase of pipeline buried depth, the displacement of the pipeline shows an overall decrease, and when the buried depth of the pipeline is 3–3.5 m, the displacement and stress are close to the peak, indicating that the buried depth is of great risk. The intersection angle between the pipeline and landslide has a significant effect on the stress of the pipeline. The smaller the intersection angle, the safer the pipeline is.

Funder

the Key Research and Development Program of Yunnan Province in 2022.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference31 articles.

1. Current construction status and development trend of global oil and gas pipelines in 2020;Qiuyang;Oil Gas Storage Transp.,2021

2. Interstate Natural Gas Association of America (2020, January 01). Interstate Natural Gas Pipeline Efficiency [EB/OL]. Available online: http://www.ingaa.org/11885/Reports/10927.aspx.

3. EGIG (2018). The 10th Report of the Gas Pipeline Incidents of European Gas Pipeline Incident Data Group, EGIG. R.0395[R].

4. New progress in China’s oil and gas pipeline construction in 2021;Gao;Int. Pet. Econ.,2022

5. Dynamical mechanisms of effects of landslides on long distance oil and gas pipelines;Qingwen;Wuhan Univ. J. Nat. Sci.,2006

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3