An Improved Ball Pivot Algorithm-Based Ground Filtering Mechanism for LiDAR Data

Author:

Ma WeiORCID,Li Qingquan

Abstract

Automatic ground filtering is an essential step for Digital Elevation Model (DEM) generation, which has significant application value. However, extraction and classification of ground points from the Light Detection and Ranging (LiDAR) data, especially in multitudinous terrain situations, is a challenging task because it is difficult to determine the set of optimal parameters for removing various non-ground features. In this paper, a new ground filtering technique based on an improved Ball Pivot Algorithm (BPA) is proposed. At the beginning, the LiDAR point cloud dataset was divided into different subsets based on the 2D regular grid. The lowest point in each grid was selected as the seed point to build a single-layer surface. After that, the improved BPA was executed to remove points on the higher location. Then, the rest of the points were calculated and selected as a new seed point according to the spatial relationship with the initial surface. Finally, non-ground points were filtered by means of improved BPA traversing all the grids. Our experimental results on the Benchmark dataset provided by the International Society for Photogrammetry and Remote Sensing (ISPRS) Working Group III/3 showed high accuracy (with a mean kappa coefficient over 80%) in terms of completeness, correctness, and quality for DEM generation. The experimental results demonstrated the proposed method is robust to various terrain situations, as it is more effective and feasible for ground filtering.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Open Research Fund Program of State Key Laboratory of Information Engineering in Surveying, Mapping, and Remote Sensing

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3