Robust Extraction of 3D Line Segment Features from Unorganized Building Point Clouds

Author:

Tian Pengju,Hua Xianghong,Tao Wuyong,Zhang MiaoORCID

Abstract

As one of the most common features, 3D line segments provide visual information in scene surfaces and play an important role in many applications. However, due to the huge, unstructured, and non-uniform characteristics of building point clouds, 3D line segment extraction is a complicated task. This paper presents a novel method for extraction of 3D line segment features from an unorganized building point cloud. Given the input point cloud, three steps were performed to extract 3D line segment features. Firstly, we performed data pre-processing, including subsampling, filtering and projection. Secondly, a projection-based method was proposed to divide the input point cloud into vertical and horizontal planes. Finally, for each 3D plane, all points belonging to it were projected onto the fitting plane, and the α-shape algorithm was exploited to extract the boundary points of each plane. The 3D line segment structures were extracted from the boundary points, followed by a 3D line segment merging procedure. Corresponding experiments demonstrate that the proposed method works well in both high-quality TLS and low-quality RGB-D point clouds. Moreover, the robustness in the presence of a high degree of noise is also demonstrated. A comparison with state-of-the-art techniques demonstrates that our method is considerably faster and scales significantly better than previous ones. To further verify the effectiveness of the line segments extracted by the proposed method, we also present a line-based registration framework, which employs the extracted 2D-projected line segments for coarse registration of building point clouds.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3