Optimisation of real‐scene 3D building models based on straight‐line constraints

Author:

Lv Kaiyun123,Chen Longyu12,He Haiqing1ORCID,Zhou Fuyang12,Yu Shixun12

Affiliation:

1. School of Surveying and Geoinformation Engineering East China University of Technology Nanchang China

2. Key Laboratory of Mine Environmental Monitoring and Improving Around Poyang Lake of Ministry of Natural Resources East China University of Technology Nanchang China

3. Jiangxi Province Engineering Research Center of Surveying Mapping and Geographic Information Nanchang China

Abstract

AbstractDue to the influence of repeated textures or edge perspective transformations on building facades, building modelling based on unmanned aerial vehicle (UAV) photogrammetry often suffers geometric deformation and distortion when using existing methods or commercial software. To address this issue, a real‐scene three‐dimensional (3D) building model optimisation method based on straight‐line constraints is proposed. First, point clouds generated by unmanned aerial vehicle (UAV) photogrammetry are down‐sampled based on local curvature characteristics, and structural point clouds located at the edges of buildings are extracted. Subsequently, an improved random sample consensus (RANSAC) algorithm, considering distance and angle constraints on lines, known as co‐constrained RANSAC, is applied to further extract point clouds with straight‐line features from the structural point clouds. Finally, point clouds with straight‐line features are optimised and updated using sampled points on the fitted straight lines. Experimental results demonstrate that the proposed method can effectively eliminate redundant 3D points or noise while retaining the fundamental structure of buildings. Compared to popular methods and commercial software, the proposed method significantly enhances the accuracy of building modelling. The average reduction in error is 59.2%, including the optimisation of deviations in the original model's contour projection.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3