Author:
Gao Xinran,Wang Junwei,Yang Liping
Abstract
Financial institutions, investors, central banks and relevant corporations need an efficient and reliable forecasting approach for determining the future of crude oil price in an effort to reach optimal decisions under market volatility. This paper presents an innovative research framework for precisely predicting crude oil price movements and interpreting the predictions. First, it compares six advanced machine learning (ML) models, including two state-of-the-art methods: extreme gradient boosting (XGB) and the light gradient boosting machine (LGBM). Second, it selects novel data, including user search big data, digital currencies and data on the COVID-19 epidemic. The empirical results suggest that LGBM outperforms other alternative ML models. Finally, it proposes an interpretable framework for facilitating decision making to interpret the prediction results of complex ML models and for verifying the importance of various features affecting crude oil price. The results of this paper provide practical guidance for participants in the crude oil market.
Subject
Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献