A New Interior Search Algorithm for Energy-Saving Flexible Job Shop Scheduling with Overlapping Operations and Transportation Times

Author:

Liu Lu,Jiang TianhuaORCID,Zhu Huiqi,Shang Chunlin

Abstract

Energy-saving scheduling has been pointed out as an interesting research issue in the manufacturing field, by which energy consumption can be effectively reduced through production scheduling from the operational management perspective. In recent years, energy-saving scheduling problems in flexible job shops (ESFJSPs) have attracted considerable attention from scholars. However, the majority of existing work on ESFJSPs assumed that the processing of any two consecutive operations in a job cannot be overlapped. In order to be close to real production, the processing overlapping of consecutive operations is allowed in this paper, while the job transportation tasks are also involved between different machines. To formulate the problem, a mathematical model is set up to minimize total energy consumption. Due to the NP-hard nature, a new interior search algorithm (NISA) is elaborately proposed following the feature of the problem. A number of experiments are conducted to verify the effectiveness of the NISA algorithm. The experimental results demonstrate that the NISA provides promising results for the considered problem. In addition, the computational results indicate that the increasing transportation time and sub-lot number will increase the transportation energy consumption, which is largely responsible for the increase in total energy consumption.

Funder

Fundamental Research Funds for the Central Universities

Natural Science Foundation of Shandong Province

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3