A Study of Stopping Rules in the Steepest Ascent Methodology for the Optimization of a Simulated Process

Author:

García-Nava Paulo EduardoORCID,Rodríguez-Picón Luis AlbertoORCID,Méndez-González Luis CarlosORCID,Pérez-Olguín Iván Juan CarlosORCID

Abstract

Competitiveness motivates organizations to implement statistical approaches for improvement purposes. The literature offers a variety of quantitative methods intended to analyze and improve processes such as the design of experiments, steepest paths and stopping rules that search optimum responses. The objective of this paper is to run a first-order experiment to develop a steepest ascent path to subsequently apply three stopping rules (Myers and Khuri stopping rule, recursive parabolic rule and recursive parabolic rule enhanced) to identify the optimum experimentation stop from two different simulated cases. The method includes the consideration of the case study, the fitting of a linear model, the development of the steepest path and the application of stopping rules. Results suggest that procedures’ performances are similar when the response obeys a parametric function and differ when the response exhibits stochastic behavior. The discussion section shows a structured analysis to visualize these results and the output of each of the stopping rules in the two analyzed cases.

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3