Abstract
The nonconvex and nonsmooth optimization problem has been attracting increasing attention in recent years in image processing and machine learning research. The algorithm-based reweighted step has been widely used in many applications. In this paper, we propose a new, extended version of the iterative convex majorization–minimization method (ICMM) for solving a nonconvex and nonsmooth minimization problem, which involves famous iterative reweighted methods. To prove the convergence of the proposed algorithm, we adopt the general unified framework based on the Kurdyka–Łojasiewicz inequality. Numerical experiments validate the effectiveness of the proposed algorithm compared to the existing methods.
Subject
Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献