Forecasting Crude Oil Prices with Major S&P 500 Stock Prices: Deep Learning, Gaussian Process, and Vine Copula

Author:

Kim Jong-MinORCID,Han Hope H.ORCID,Kim SangjinORCID

Abstract

This paper introduces methodologies in forecasting oil prices (Brent and WTI) with multivariate time series of major S&P 500 stock prices using Gaussian process modeling, deep learning, and vine copula regression. We also apply Bayesian variable selection and nonlinear principal component analysis (NLPCA) for data dimension reduction. With a reduced number of important covariates, we also forecast oil prices (Brent and WTI) with multivariate time series of major S&P 500 stock prices using Gaussian process modeling, deep learning, and vine copula regression. To apply real data to the proposed methods, we select monthly log returns of 2 oil prices and 74 large-cap, major S&P 500 stock prices across the period of February 2001–October 2019. We conclude that vine copula regression with NLPCA is superior overall to other proposed methods in terms of the measures of prediction errors.

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3