Abstract
This paper is devoted to a new first order Taylor-like formula, where the corresponding remainder is strongly reduced in comparison with the usual one, which appears in the classical Taylor’s formula. To derive this new formula, we introduce a linear combination of the first derivative of the concerned function, which is computed at n+1 equally spaced points between the two points, where the function has to be evaluated. We show that an optimal choice of the weights in the linear combination leads to minimizing the corresponding remainder. Then, we analyze the Lagrange P1- interpolation error estimate and the trapezoidal quadrature error, in order to assess the gain of the accuracy we obtain using this new Taylor-like formula.
Subject
Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献