Abstract
A probabilistic approach is developed for the exact solution u to a deterministic partial differential equation as well as for its associated approximation uh(k) performed by Pk Lagrange finite element. Two limitations motivated our approach: On the one hand, the inability to determine the exact solution u relative to a given partial differential equation (which initially motivates one to approximating it) and, on the other hand, the existence of uncertainties associated with the numerical approximation uh(k). We, thus, fill this knowledge gap by considering the exact solution u together with its corresponding approximation uh(k) as random variables. By a method of consequence, any function where u and uh(k) are involved are modeled as random variables as well. In this paper, we focus our analysis on a variational formulation defined on Wm,p Sobolev spaces and the corresponding a priori estimates of the exact solution u and its approximation uh(k) in order to consider their respective Wm,p-norm as a random variable, as well as the Wm,p approximation error with regards to Pk finite elements. This will enable us to derive a new probability distribution to evaluate the relative accuracy between two Lagrange finite elements Pk1 and Pk2,(k1<k2).
Subject
Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献