Three Hybrid Scatter Search Algorithms for Multi-Objective Job Shop Scheduling Problem

Author:

Hernández-Ramírez Leo,Frausto-Solís JuanORCID,Castilla-Valdez Guadalupe,González-Barbosa Javier,Sánchez Hernández Juan-PauloORCID

Abstract

The Job Shop Scheduling Problem (JSSP) consists of finding the best scheduling for a set of jobs that should be processed in a specific order using a set of machines. This problem belongs to the NP-hard class problems and has enormous industrial applicability. In the manufacturing area, decision-makers consider several criteria to elaborate their production schedules. These cases are studied in multi-objective optimization. However, few works are addressed from this multi-objective perspective. The literature shows that multi-objective evolutionary algorithms can solve these problems efficiently; nevertheless, multi-objective algorithms have slow convergence to the Pareto optimal front. This paper proposes three multi-objective Scatter Search hybrid algorithms that improve the convergence speed evolving on a reduced set of solutions. These algorithms are: Scatter Search/Local Search (SS/LS), Scatter Search/Chaotic Multi-Objective Threshold Accepting (SS/CMOTA), and Scatter Search/Chaotic Multi-Objective Simulated Annealing (SS/CMOSA). The proposed algorithms are compared with the state-of-the-art algorithms IMOEA/D, CMOSA, and CMOTA, using the MID, Spacing, HV, Spread, and IGD metrics; according to the experimental results, the proposed algorithms achieved the best performance. Notably, they obtained a 47% reduction in the convergence time to reach the optimal Pareto front.

Publisher

MDPI AG

Subject

Geometry and Topology,Logic,Mathematical Physics,Algebra and Number Theory,Analysis

Reference41 articles.

1. The Complexity of Flowshop and Jobshop Scheduling

2. Scheduling Theory Algorithm, and Systems;Pinedo,2016

3. Methods and Techniques Used for Job Shop Scheduling, MSc. Research Project, Florida Technological Universityhttps://stars.library.ucf.edu/cgi/viewcontent.cgi?article=1389&context=rtd

4. Multi-objective flexible job shop schedule: Design and evaluation by simulation modeling

5. Multiobjective Flexible Job Shop Scheduling Using Memetic Algorithms

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3