Author:
Zhang Yunyang,Du Shiyu,Zhang Quan
Abstract
The slime mold algorithm (SMA) is a swarm-based metaheuristic algorithm inspired by the natural oscillatory patterns of slime molds. Compared with other algorithms, the SMA is competitive but still suffers from unbalanced development and exploration and the tendency to fall into local optima. To overcome these drawbacks, an improved SMA with a dynamic quantum rotation gate and opposition-based learning (DQOBLSMA) is proposed in this paper. Specifically, for the first time, two mechanisms are used simultaneously to improve the robustness of the original SMA: the dynamic quantum rotation gate and opposition-based learning. The dynamic quantum rotation gate proposes an adaptive parameter control strategy based on the fitness to achieve a balance between exploitation and exploration compared to the original quantum rotation gate. The opposition-based learning strategy enhances population diversity and avoids falling into the local optima. Twenty-three benchmark test functions verify the superiority of the DQOBLSMA. Three typical engineering design problems demonstrate the ability of the DQOBLSMA to solve practical problems. Experimental results show that the proposed algorithm outperforms other comparative algorithms in convergence speed, convergence accuracy, and reliability.
Funder
Entrepreneuship Program of Foshan National Hi-tech In- 348 dustrial Development Zone and Zhejiang Province Key Research and Development Program
Subject
Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献