An Insulin-Modified pH-Responsive Nanopipette Based on Ion Current Rectification

Author:

Wang Xu-Fan123ORCID,Duan Yi-Fan12,Zhu Yue-Qian123,Liu Zi-Jing13,Wu Yu-Chen23,Liu Tian-Hao12,Zhang Ling1,Wei Jian-Feng14,Liu Guo-Chang13

Affiliation:

1. Department of Histology and Embryology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou 221004, China

2. The Second Clinical Medical College, Xuzhou Medical University, Xuzhou 221004, China

3. National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou 221004, China

4. Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China

Abstract

The properties of nanopipettes largely rely on the materials introduced onto their inner walls, which allow for a vast extension of their sensing capabilities. The challenge of simultaneously enhancing the sensitivity and selectivity of nanopipettes for pH sensing remains, hindering their practical applications. Herein, we report insulin-modified nanopipettes with excellent pH response performances, which were prepared by introducing insulin onto their inner walls via a two-step reaction involving silanization and amidation. The pH response intensity based on ion current rectification was significantly enhanced by approximately 4.29 times when utilizing insulin-modified nanopipettes compared with bare ones, demonstrating a linear response within the pH range of 2.50 to 7.80. In addition, insulin-modified nanopipettes featured good reversibility and selectivity. The modification processes were monitored using the I-V curves, and the relevant mechanisms were discussed. The effects of solution pH and insulin concentration on the modification results were investigated to achieve optimal insulin introduction. This study showed that the pH response behavior of nanopipettes can be greatly improved by introducing versatile molecules onto the inner walls, thereby contributing to the development and utilization of pH-responsive nanopipettes.

Funder

National Natural Science Foundation of China

Jiangsu Training Program of Innovation and Entrepreneurship for Undergraduates

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3