Design of a Unique Device for Residual Stresses Quantification by the Drilling Method Combining the PhotoStress and Digital Image Correlation

Author:

Pástor MiroslavORCID,Hagara MartinORCID,Virgala IvanORCID,Kal’avský AdamORCID,Sapietová Alžbeta,Hagarová Lenka

Abstract

This paper presents a uniquely designed device combining the hole-drilling technique with two optical systems based on the PhotoStress and digital image correlation (DIC) method, where the digital image correlation system moves with the cutting tool. The authors aimed to verify whether the accuracy of the drilled hole according to ASTM E837-13a standard and the positioning accuracy of the device were sufficient to achieve accurate results. The experimental testing was performed on a thin specimen made from strain sensitive coating PS-1D, which allowed comparison of the results obtained by both methods. Although application of the PhotoStress method allows analysis of the strains at the edge of the cut hole, it requires a lot of experimenter’s practical skills to assess the results correctly. On the other hand, the DIC method allows digital processing of the measured data. However, the problem is not only to determine the data at the edge of the hole, the results also significantly depend on the smoothing levels used. The quantitative comparison of the results obtained was performed using finite element analysis.

Funder

Kultúrna a Edukacná Grantová Agentúra MŠVVaŠ SR

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3